MATHEMATICS

MFP3

Unit Further Pure 3

Thursday 11 June 20099.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function $y(x)$ satisfies the differential equation

$$
\begin{array}{lc}
& \frac{\mathrm{d} y}{\mathrm{~d} x} \\
& =\mathrm{f}(x, y) \\
\text { where } & \mathrm{f}(x, y)=\sqrt{x^{2}+y+1} \\
\text { and } & y(3)=2
\end{array}
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(3.1)$, giving your answer to four decimal places.
(b) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a), to obtain an approximation to $y(3.2)$, giving your answer to three decimal places.

2 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-y \tan x=2 \sin x
$$

given that $y=2$ when $x=0$.

3 The diagram shows a sketch of a circle which passes through the origin O.

The equation of the circle is $(x-3)^{2}+(y-4)^{2}=25$ and $O A$ is a diameter.
(a) Find the cartesian coordinates of the point A.
(b) Using O as the pole and the positive x-axis as the initial line, the polar coordinates of A are (k, α).
(i) Find the value of k and the value of $\tan \alpha$.
(ii) Find the polar equation of the circle $(x-3)^{2}+(y-4)^{2}=25$, giving your answer in the form $r=p \cos \theta+q \sin \theta$.

4 Evaluate the improper integral

$$
\int_{1}^{\infty}\left(\frac{1}{x}-\frac{4}{4 x+1}\right) \mathrm{d} x
$$

showing the limiting process used and giving your answer in the form $\ln k$, where k is a constant to be found.

5 It is given that y satisfies the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=8 \sin x+4 \cos x
$$

(a) Find the value of the constant k for which $y=k \sin x$ is a particular integral of the given differential equation.
(b) Solve the differential equation, expressing y in terms of x, given that $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=4$ when $x=0$.

6 The function f is defined by

$$
\mathrm{f}(x)=(9+\tan x)^{\frac{1}{2}}
$$

(a) (i) Find $\mathrm{f}^{\prime \prime}(x)$.
(ii) By using Maclaurin's theorem, show that, for small values of x,

$$
(9+\tan x)^{\frac{1}{2}} \approx 3+\frac{x}{6}-\frac{x^{2}}{216}
$$

(b) Find

$$
\lim _{x \rightarrow 0}\left[\frac{\mathrm{f}(x)-3}{\sin 3 x}\right]
$$

7 The diagram shows the curve C_{1} with polar equation

$$
r=1+6 \mathrm{e}^{-\frac{\theta}{\pi}}, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

(a) Find, in terms of π and e, the area of the shaded region bounded by C_{1} and the initial line.
(b) The polar equation of a curve C_{2} is

$$
r=\mathrm{e}^{\frac{\theta}{\pi}}, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

Sketch the curve C_{2} and state the polar coordinates of the end-points of this curve.
(c) The curves C_{1} and C_{2} intersect at the point P. Find the polar coordinates of P.

8 (a) Given that $x=t^{2}$, where $t \geqslant 0$, and that y is a function of x, show that:
(i) $2 \sqrt{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t}$;
(3 marks)
(ii) $4 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$.
(3 marks)
(b) Hence show that the substitution $x=t^{2}$, where $t \geqslant 0$, transforms the differential equation

$$
4 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2(1+2 \sqrt{x}) \frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=0
$$

into

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}-3 y=0 \tag{2marks}
\end{equation*}
$$

(c) Hence find the general solution of the differential equation

$$
4 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2(1+2 \sqrt{x}) \frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=0
$$

giving your answer in the form $y=\mathrm{g}(x)$.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

